On convex permutations

نویسندگان

  • Michael H. Albert
  • Steve Linton
  • Nikola Ruskuc
  • Vincent Vatter
  • Steve Waton
چکیده

A selection of points drawn from a convex polygon, no two with the same vertical or horizontal coordinate, yields a permutation in a canonical fashion. We characterise and enumerate those permutations which arise in this manner and exhibit some interesting structural properties of the permutation class they form. We conclude with a permutation analogue of the celebrated Happy Ending Problem. 1 ON CONVEX PERMUTATIONS 2 Figure 1: Convex and standard drawings of the permutation 1243.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modelling Decision Problems Via Birkhoff Polyhedra

A compact formulation of the set of tours neither in a graph nor its complement is presented and illustrates a general methodology proposed for constructing polyhedral models of decision problems based upon permutations, projection and lifting techniques. Directed Hamilton tours on n vertex graphs are interpreted as (n-1)- permutations. Sets of extrema of Birkhoff polyhedra are mapped to tours ...

متن کامل

The triples of geometric permutations for families of disjoint translates

A line meeting a family of pairwise disjoint convex sets induces two permutations of the sets. This pair of permutations is called a geometric permutation. We characterize the possible triples of geometric permutations for a family of disjoint translates in the plane. Together with earlier studies of geometric permutations this provides a complete characterization of realizable geometric permut...

متن کامل

Locally Convex Words and Permutations

We introduce some new classes of words and permutations characterized by the second difference condition π(i − 1) + π(i + 1) − 2π(i) ≤ k, which we call the k-convexity condition. We demonstrate that for any sized alphabet and convexity parameter k, we may find a generating function which counts k-convex words of length n. We also determine a formula for the number of 0-convex words on any fixed...

متن کامل

Analyzing Random Permutations for Cyclic Coordinate Descent

We consider coordinate descent methods on convex quadratic problems, in which exact line searches are performed at each iteration. (This algorithm is identical to Gauss-Seidel on the equivalent symmetric positive definite linear system.) We describe a class of convex quadratic problems for which the random-permutations version of cyclic coordinate descent (RPCD) outperforms the standard cyclic ...

متن کامل

ar X iv : 0 71 1 . 05 82 v 1 [ m at h . C O ] 5 N ov 2 00 7 PERMUTATIONS DEFINING CONVEX PERMUTOMINOES

A permutomino of size n is a polyomino determined by particular pairs (π1, π2) of permutations of size n, such that π1(i) 6= π2(i), for 1 ≤ i ≤ n. Here we determine the combinatorial properties and, in particular, the characterization for the permutations defining convex permutominoes. Using such a characterization, these permutations can be uniquely represented in terms of the so called square...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Mathematics

دوره 311  شماره 

صفحات  -

تاریخ انتشار 2011